Overview
In recent years, no technology has done more to shape our economy, society and lives than microchips. Semiconductors are now integral to the way we live, work and interact with people and things.
Microchips: Driving the Economy, Shaping Society
Since 2004, global GDP growth has been outpaced by the dramatic growth of the semiconductor market.
In 1965, American engineer Gordon Moore predicted the number of transistors per silicon chip would double each year. His prediction — now known as “Moore’s Law” — has held true for well over half a century.
In that time, advancements in semiconductor wafer fabrication have yielded progressively smaller and smarter chips, enabling ever-smaller devices and even more powerful builds, as with SoC (System on a Chip) applications.
This demand for “smaller and smarter” will only accelerate as societies more fully embrace Artificial Intelligence, 5G, the Cloud, the Internet of Things and Electrified/Autonomous Vehicles in the years and decades ahead.
Will Moore’s Law still be valid in the future?
Realizing new extremes in semiconductor miniaturization is almost certain, based on the continuing advances in photolithography technologies and equipment:
- Deep Ultraviolet (DUV) lithography processes carve electric circuits into semiconductor wafers with processes of > 7 nm.
- Newer Extreme Ultraviolet (EUV) lithography technology achieves even smaller processes of 2 nm and beyond. This advance, which allows more electric circuits to be squeezed onto a chip, is vital to sustaining Moore’s Law.
- Next-generation High Numerical Aperture (High-NA EUV) lithography systems are currently in development. They are anticipated to enable even higher-resolution patterning, which should validate Moore’s Law in the foreseeable future.
Heightened Challenges
The semiconductor industry now faces two converging challenges: unprecedented demand for smaller, smarter chips of the highest quality, along with unprecedented demand for higher chip output.
Challenge #1: More Miniaturization = More Precision & Cleanliness
The relentless demand for smaller, more powerful chips with higher data rates creates an exponential increase in process complexity.
The smaller the chip, the greater the challenge
To continue shrinking structures on chips requires more equipment and filters, more extreme parameters for precision, and more rigorous demands for contamination control … and all under high-vacuum conditions.
- Any equipment in the vacuum environment / processing vessel must provide the lowest outgassing values to prevent materials from introducing hydrocarbon (CxHy) and water-based contaminants. Reduced outgassing of cables is a must to prevent fogging of the mirrors that must remain clear for precise results in the exposure stage.
- Preventing contamination due to particulation is a continuous challenge for parts such as flexible cables on a wafer stage that move at high speeds. If cable surfaces contact and abrade each other as they move and flex during multi-million-part production cycles, the tiny particles they release can contaminate microscopic semiconductor circuits. Processing becomes infinitely more complex when it requires lithography cables with reduced-to-no particulation.
Challenge #2: Rising Demands for Yield, Quality and Speed
With “smart” devices proliferating at an unprecedented rate, more — and more sophisticated — chips are needed now than ever before. But achieving maximum production capacity with maximum quality is not a simple task.
The world needs more microchips. But maximizing throughput comes at a cost.
It’s simple economics: high-value semiconductor lithography equipment must work at maximum efficiency, and deliver maximum yields, to make the production process profitable. To achieve the highest throughput demands more machine run-time per day, and higher wafer-per-hour speeds.
For example, chip-manufacturers run advanced EUV lithography machines at maximum yield to provide the quantity of chips the market demands at a reasonable price. In consequence:
- A primary goal is to minimize costly machine downtime / maintenance time, which means minimal “stress relief” for the equipment, and zero tolerance for quality issues.
- Higher wafer / hour throughput requires increasing the speed and acceleration / deceleration of processes within the lithography machines. This puts greater stress on components like cables. These stresses persist through multi-million-part cycles.
- Cable assemblies for lithography applications must also move at higher speeds without compromising signal integrity. As a result, the semiconductor wafer fabrication process requires higher data-rate cables with more durability, flexibility, and reliability to meet these increasing demands of the advancing lithography machines.
The requirements for cables are growing. Gore can meet them.
Each element of every Gore cable undergoes thorough testing of its electrical performance to ensure it provides the reliability and signal integrity EUV applications require.
As equipment OEMs and semiconductor manufacturers prepare to meet the newest — and future — demands of the EUV lithography market, the technology leaders will face an unprecedented challenge:
Every component of the machine must be absolutely clean and work reliably — with zero tolerance for failure, even in the most demanding environments. And these conditions must be maintained over multi-million-part production cycles.
This challenge is not limited to OEMs: Semiconductor manufacturing can only advance to the next level when all key suppliers can also meet the same challenges.
Gore has already championed this cause.
Currently, our semiconductor cables and cable assemblies are unsurpassed at meeting the extreme standards in place for advanced EUV lithography:
- cleanliness standards
- durability and flexibility under the harshest operating conditions
- reliability even through multi-million-part production runs
- uncompromised signal integrity
And we are working in partnership to meet future challenges.
Gore thinks ahead. The same urge for scientific progress that informs Moore’s Law also motivates our engineers. We are always seeking new solutions, and new ways to partner with lithography equipment manufacturers that share the same spirit.
Because we think ahead and grow with customer requirements, we continue working to optimize our capabilities and cables for vacuum and non-vacuum environments, so we will be prepared to meet newer, more stringent standards for cable cleanliness, durability, flexibility and reliability.
We know our technically advanced, extremely clean Gore lithography cables can enable semiconductor manufacturing to achieve even higher cleanliness standards in the future.
Lithography Solutions
Cables are central to who we are and what we do: We’ve devoted more than 50 years to advancing our capabilities, commitments and team expertise in this market. And today, Gore cables have achieved a level of quality that is currently without equal: they have been qualified for use in the most advanced EUV lithography machines.
Gore Cable Solutions: For Lithography. For You.
Our EUV cables meet the most stringent cleanliness standards, have proven their durability and flexibility under the harshest of conditions, and have demonstrated uncompromised signal integrity. It all adds up to one thing: Reliable cables for lithography, even over multi-million cycles.
Every Gore cable solution is customized: In the hands of our highly experienced teams, it’s planned, constructed and tested to the specific requirements of a given lithography semiconductor company or application.
Gore offers two categories of proven high-performance EUV cable solutions: for static and for flexible applications. Both are qualified for high-vacuum environments. And both offer proven cable reliability that can mean decreased maintenance, decreased downtime and lower total costs over time.
GORE® Ultraclean Static Round Cables & Assemblies: Cleanliness Grade 1
GORE Ultraclean Static Round Cables start with low outgassing values, which Gore can tailor to even lower levels.
Designed for static applications, our highest-purity cables can be found in the innermost parts of the equipment with the most extreme cleanliness requirements. Our ultraclean cables for EUV applications can meet Cleanliness Grade 1 standards, because:
- Gore employs rigorous IP-protected cleaning processes throughout every step, from manufacturing through final testing.
- GORE Ultraclean Static Round Cables are constructed of various fluoropolymers such as expanded polytetrafluoroethylene (ePTFE), a very flexible, low-outgassing polymer. Gore can further optimize outgassing values to meet specific customer requirements.
See Gore’s “Ultraclean” technical specs.
GORE® High Flex Cables & Assemblies: Cleanliness Grades 2 and 4
GORE High Flex Cables are robust and reliable, for high performance and low contamination over multi-million flex cycles.
These flex cables for EUV and DUV applications provide reliable performance and purity even under higher-speed / higher-stress, multi-million flex cycles. They can meet Cleanliness Grade 2 and 4 standards, because they:
- Undergo rigorous, IP-protected cleaning processes at every stage of the cable production process.
- Are constructed of ePTFE, for low-outgassing flex cables with high reliability and reduced particulation over long-duration cycles.
With a proven flex life and durability in complex environments where other cables fail, GORE High Flex Cables are engineered for improved signal integrity and transmission speeds. These are crucial for complex cable configurations that incorporate tubes for gas or fluid transport alongside cabling for data and for high- and low-power electrical signals. Gore is known for engineering and developing complex cable configurations that incorporate all these elements — without propagating crosstalk, interference or interaction among the constituent components. That, and the fact that each GORE High Flex Cable and Assembly is truly a one-of-a-kind solution designed for the needs of a singular application — means our broad and deep engineering expertise can benefit your new program.
See Gore’s “High-Flex” technical specs.
Why does having the right EUV lithography cables matter?
Applications in Lithography
Where will you find Gore Cables for wafer exposure and inspection?
Advanced EUV lithography systems conduct multiple sophisticated handling, exposure and imaging functions, all within a high-vacuum environment that provides the high purity in semiconductors today’s standards require.
The importance of automation carries through to the areas of Metrology and Testing, where leading lithography machine manufacturers offer multiple solutions to additional process steps.
Intrigued?Are you wondering if your new project could benefit from Gore expertise and capabilities? |
The Gore Advantage
Why choose Gore for lithography cables? Gore offers lithography companies high quality that translates to real value in use: less equipment maintenance and downtime for lower total costs over the equipment’s life cycle. Gore is positioned to provide that value, because:
- Our cables deliver the lowest contamination, lowest particulation, and reliable signal integrity for high-purity lithography or vacuum applications. And our cables enable tight radius bends, to facilitate easier installation and more flexible routing.
- Our expertise and highly integrated processes enable co-engineering of custom cable solutions, tight control of cleanliness and quality through every step, and access to extended support if needed. From raw materials to finished assembly, Gore owns the process — and the responsibility to ensure our products perform as we say they will.
Product Properties Designed for Extreme Applications
Collaborative Partnerships that Foster Innovation
Intrigued?Are you wondering if your new project could benefit from Gore expertise and capabilities? |
Commitment to Semiconductors
Gore cables and cable assemblies play a crucial role in enabling companies to capitalize on the benefits of DUV and EUV lithography technology by enhancing system productivity and reliability. But there is much more to the story:
Broadly Experienced. Deeply Invested.
In addition to our lithography partnerships, we are deeply invested in other aspects of the semiconductor wafer fabrication process. This broad exposure informs our perspectives on industry-wide trends, and helps us to more effectively understand, anticipate and solve upcoming customer challenges.
GORE® Microfiltration Media
Learn more about GORE® Microfiltration Media
Semiconductor fabrication requires high-purity process fluids (water, chemicals and specialty solutions) to protect sensitive fabrication steps, ensure chip performance and enable high processing yields. It’s critical to have high-performance membrane filters that can withstand harsh operating conditions while effectively removing harmful contaminants.
Gore’s hydrophobic and hydrophilic filtration membranes provide nanometer levels of particle capture while operating at the high flow rates required for advanced semi process tools. Our chemically inert membranes effectively remove contaminants, enabling the most demanding applications — wet etch and clean, resist stripping, photolithography, UPW and other fine filtration processes — to operate at optimal levels of purity.
Unlike other membranes that are vulnerable to heat or chemicals, or release extractables that compromise process purity, GORE® Microfiltration Media can provide greater contaminant retention at a given flow rate, which can enable higher yields in microchip fabrication without compromise to quality.
GORE® Sealant Technologies
Learn more about GORE® Sealant Technologies
GORE® Gaskets effectively seal and protect equipment in demanding semiconductor manufacturing applications. They provide exceptionally reliable and chemically resistant sealing solutions. Our 100% pure expanded-PTFE gaskets are proven effective because they:
- Resist chemical attack by the most aggressive chemicals.
- Exhibit exceptional dimensional stability, resisting cold flow that could compromise the sealing system.
- Seal effectively with low applied gasket stress relative to other pure PTFE sealing options.
- Provide the low extractables of a 100% pure (expanded) PTFE solution.
- Withstand temperatures from -269 °C to +315 °C (–452 °F to +600 °F).
GORE® Gaskets maximize reliability and minimize sealing-related maintenance of high-purity process fluid systems, including UPW and chemical delivery systems for aggressive wet etch and clean chemistry.
News & Events
Resources
FOR INDUSTRIAL USE ONLY
Not for use in food, drug, cosmetic or medical device manufacturing, processing, or packaging operations.
Contact Us |
||||
|
United States +1 800 356 4622 |
Europe +49 9144 6010 |
China +86 755 8359 8262 |
South Korea +82 2 393 3411 |