MINIMIZING LCOH WITH ADVANCED PROTON EXCHANGE MEMBRANES

Hydrogen Production 23rd October, 2024

Dr. Oliver Teller Product Manager PEM Water Electrolysis W. L. Gore & Associates GmbH

Together, improving life

Agenda

1.0

Headwinds in hydrogen production

2.0

Calculating LCOH

3.0

Exploring industry use-cases

4.0

Gore's PEM promise

HEADWINDS IN HYDROGEN PRODUCTION

The clean hydrogen project pipeline is growing & maturing, but deployment must accelerate rapidly to meet climate goals

Hydrogen projects announced globally

- globally as of May 2024
- 434 projects (about 28% of total) have passed FID stage

Hydrogen Insights 2024, Hydrogen Council, 2024, https://hydrogencouncil.com

• USD 678 billion in direct investments in clean H₂ projects have been announced through 2030 • Just over 11% (USD 75 billion) is committed to **projects** that have passed FID

Headwinds for hydrogen projects

The clean hydrogen industry faces significant cost challenges.

Three key factors driving project development:

Development of levelized cost of hydrogen

A lack of committed offtakers, high costs, and regulatory uncertainty are significant barriers preventing wider adoption and slowing down project development.

2

CALCULATING LCOH

LCOH is used to benchmark the cost-competitiveness of hydrogen production projects

There are many studies focusing on LCOH reduction considering different regional and economical factors.

However, as a leading PEM supplier, Gore wanted to investigate PEM attributes and their impact on reducing LCOH.

Levelized Cost of Hydrogen (LCOH)

Hydrogen Output

Developing a hypothesis

The right PEM can significantly reduce LCOH by lowering electricity costs.

Reduced LCOH

Expanding that hypothesis

How? By increasing the efficiency of an electrolysis cell via these two PEM attributes:

Hydrogen Permeation Resistance

The lower the membrane proton resistance, the higher the cell efficiency

Proton Resistance

Gore can engineer the membrane proton resistance by:

- reducing membrane thickness
- increasing ionomer conductivity

Hydrogen Permeation Resistance

The higher the membrane hydrogen permeation resistance, the higher the cell efficiency

Proton Resistance

Gore can engineer the membrane's H₂ crossover via:

- smart additives
- unique ionomers

Hydrogen Permeation Resistance

Breaking performance barriers with our advanced PEM technology

GORE® PEM M275.80 provides

- superior proton resistance
- excellent permeation resistance

to deliver improved overall cell efficiency.

Membrane proton resistance (mOhm*cm²)

Increasing cell voltage efficiency. Reducing electricity consumption.

~5% Greater cell voltage efficiencies.		1.9	
Gore's PEM M275.80 offers ~5% greater cell voltage efficiencies over other PEM.	/oltage (V)	1.7	
This reduces the amount of electricity required to produce 1 kg of Hydrogen by ~5%.		1.5	
		1.4 L	

0

Balancing the Faradaic efficiency

~0.5% Faradaic efficiency differential

The difference in Faradaic efficiency between GORE[®] PEM M275.80 and Market PEM is <0.5% at 2 A/cm² and 30 bar.

Gore's balanced Faradaic efficiency has no significant impact on improving cell efficiency. The key driver for electricity savings is the PEM attribute proton resistance.

Faradaic efficiency at different pressure conditions at 80 °C

Current density (A/cm²)

EXPLORING INDUSTRY USE-CASES

Conducting an industry-first investigation

Gore collaborated with FEV Consulting to prove that **Gore's PEM M275.80 provides the lowest LCOH** compared to an equivalent state-of-the-art PEM in three distinct use cases:

Offshore wind-powered H₂ production

H₂ in steel production

H₂ production hub for transport via PV

Use-case definition

Large-scale green H₂ production for diverse off-takers powered by offshore wind.

	pr	00	lue	ctio	on	for	
u	Iti	pl	e	off	-ta	ke	rs

	1.1		
(H _a)	
	' '2		
		1	

PEM Electrolyzer system operated at differential pressure

Sale of O₂: €24.5/t

System output LCOH output LCOH savings / year

Production: 11,400 tons of hydrogen/year

Electrolyzer capacity:

Use-case definition

System output

LCOH output LCOH savings / year

Use-case definition

System output L

LCOH output LCOH savings / year

System efficiency is crucial as electricity expenditures account for over 80% of the LCOH.

This results in an LCOH reduction of €0.24/kg H₂ compared to Market PEM.

Use-case definition

System output LCOH output

utput LCOH savings / year

For an annual production of 11,400 tons at $€4.52/kg H_2$, this translates to yearly electricity savings of €2,700,000 compared

Use-case definition

System output LCOH output LCOH savings / year

H ₂ demand	
-----------------------	--

_			
	1		
	1)	
_	2		-1
_		<u> </u>	

Electrolyzer system operated at ambient conditions

$ \land $	P
	f
\bowtie	Ρ

Sale of O₂: €24.5/t

Production: 85,000 tons of hydrogen/year

Electrolyzer capacity: 500 MW

Power: Via grid From nuclear or Power Purchase Agreements

Use-case definition System output LCOH output LCOH savings / year

Use-case definition System output LCOH output LCOH savings / year

GORE® PEM M275.80 is ~5% more efficient and therefore demonstrates ~5% less electricity consumption vs. Market PEM.

This results in an LCOH reduction of €0.22/kg H₂ compared to Market PEM.

M275.80

4.63

Use-case definition

System output

LCOH output

LCOH savings / year

For ~85,000 tons produced annually at €4.63/kg H₂, this translates to annual electricity savings of €18.7 million with GORE[®] PEM

In summary

Modelling various use cases showed that Gore's high-efficiency PEM M275.80 reduces LCOH by up to 5%.

Further **enhancements in proton resistance and hydrogen permeation resistance** will drive LCOH even lower.

Therefore, innovations such as **unique ionomers**, additives and a thin & durable membrane construction play a pivotal role.

GORE'S PEM PROMISE

Gore's PEM promise

How Gore supports the scaling of green hydrogen production

Together, improving life.

©2024 W. L. Gore & Associates

and durability in a complex system

THANK YOU.

Visit our Clean Energy Experts in Hall A3, Booth C70.

Download the presentation after the event.

Download the white paper.

Together, improving life

