HIGH PRODUCTIVITY PROTEIN A MEMBRANE DEVICES COMPLEMENT DISPOSABLE UPSTREAM TECHNOLOGY FOR A FULLY SINGLE-USE PROCESS

William Barrett, Ph.D. Product Specialist

Key Trends Impacting Bioprocessing Today

SINGLE-USE SYSTEMS

- Smaller footprint, less capital
- Sustainability: less water, chemicals and energy
- Scalable & flexible
- Less downtime & faster turnover
- Lower risk of contamination, bioburden, and operator error

INTENSIFIED PROCESSING

- Smaller footprint producing higher productivity
- Consistent scalability & facility fit to speed tech transfer

SUPPLY CHAIN

- Dual source options
- Short lead times

NEW, COMPLEX MODALITIES

Multispecifics, ADCs, Fc fusions, etc.

The Downstream Bottleneck: Resin Chromatography

- Protein A resin columns are oversized/underutilized to gain flow and speed processing times to keep pace with upstream productivity
- Need to optimize chromatography media performance to enable high flow rate and high binding capacities
 - **Facility fit challenges** for multiple drugs, scales and potencies
- Source for packing, qualifying, storing, validating resin columns
 -) **Bioburden** that can impact your bottom line and your project timeline

Proprietary Membrane, Immobilized Protein A

Focus for Scaling Proprietary Membrane

Pressure Drop

Focus for Scaling Proprietary Membrane

Pressure Drop

Seconds Residence Time

Focus for Scaling Proprietary Membrane

Elution Width on average ~ 2.5 MV

© 2023 W. L. Gore & Associates

Focus on Productivity Optimization

Faster than 20srt

Improved Productivity with Flexible Protocols

GORE[®] Protein Capture Devices with Protein A - 58 mL: 4g/L CHO cell harvest

Initial Study:	Reduce Transitions:	Alternative CIP1:	Alternative CIP2:
88 g L ⁻¹ h ⁻¹	143 g L ⁻¹ h ⁻¹	191 g L ⁻¹ h ⁻¹	207 g L ⁻¹ h ⁻¹
 Loading: 30srt Operational: 10srt Conservative transitions 3 minute CIP per cycle 16.8 minutes/per cycle 	 Loading: 30srt Operational: 10srt Reduced transitions 3 minute CIP per cycle 12.6 minutes/per cycle 	 Loading: 15srt Operational: 7srt Reduced transitions 2 minute CIP per cycle 9.5 minutes/per cycle 	 Loading: 15srt Operational: 7srt Reduced transitions "Pulse CIP" per cycle 6.9 minutes/per cycle

- CMO and pharma evaluations show no difference in product quality attributes relative to productivity
 - HCP clearance
 - Yield
 - Protein A leaching
- Similar CQAs to resin
- Validated through 100 cycles and demonstrated 200 cycles
- Flexible CIP and durability enable ability to clear 2000-L bioreactor in fully disposable process

Results from Partner Research: Single-Use Upstream + Protein A Purification Devices

Protein A Resin Limitations in Standard mAb Platforms

- High volumes in harvest
- Limited hold times
- Long residence times during loading
- Large columns required
- Expensive
- Difficult to clean
- Bioburden issues
- Re-use validation

Gore Protein A Membrane | 1 L Manufacturing Scale Device

2 x 1 L Protein A Devices

The Research Execution

- Scale-up run using 2 x 1 L Gore Protein A devices
- Small footprint required (approx., 10 x 10 inch for each column).
- Standard single use chromatography skid used

Protein A Membrane | Short Residence Time and Rapid Mass Transfer

Harvest titer : 1.717 g/L Membrane volume : 2 L Load volume: 23.5 L (40 g/cycle)

We performed two method to reduce sanitization volume between cycles

Cycle 1-10

Step	Volume (MV)	Residence Time (min)	Total Time (min)
Equilibration	3.0	0.2	0.6
Load	11.6	0.4	4.66
Wash 1(EQ wash)	1.43	0.4	0.57
Wash 2(Salt wash)	3	0.2	0.60
Pre-elution wash (EQ wash)	3	0.2	0.60
Elution	3.75	0.2	0.75
Sanitization (0.1N NaOH)	5	0.4	2.00
Re-Equilibration	3	0.2	0.60
Total	33.8	-	10.38

Cycle 11-19

Step	Volume (MV)	Residence Time (min)	Total Time (min)
Equilibration	3.0	0.2	0.6
Load	11.6	0.4	4.66
Wash 1(EQ wash)	1.43	0.4	0.57
Wash 2(Salt wash)	3	0.2	0.60
Pre-elution wash (EQ wash)	3	0.2	0.60
Elution	3.75	0.2	0.75
Sanitization (0.1N NaOH)	3	0.4	1.20
Re-Equilibration	3	0.2	0.60
Total	31.8	-	9.58

Protein A Membrane | A280 Chromatograms & High Reproducibility

Protein A Membrane at 500L | Pressure Trends

Over 19 cycles:

- No clogging of the device occurred and there was no sudden increase in pressure
- There was no increase in pressure when Sani volumes were reduced (after Cycle 11)

Lab Scale Results: Protein A Resin vs. Gore Device Demonstrate Good Performance and Quality

	5 mL Protein A Resin column	3.5 mL Gore Device with Protein A	2 L Gore Device with Protein A
Productivity (g/L/h)	13.8 <mark>960% in</mark>	crease 132.8	132.6
Average elution volume [100-100 mAU cutoff]	2.72	1.84	2.68
Elution HCP (LRV)	2.03	2.12 Similar per	formance 2.22
Elution Protein A (ppm)	4.28	5.25	2.49
Average SEC Product Quality (% main/%HMW)	89.9 / 10.1	93.3 / 6.7	93.9 / 6.1

Notes:

Cell culture harvest purified with laboratory-scale columns to provide benchmark performance targets & scaling reference for the Gore Protein A membrane device.

Productivity calculations indicate a consistent 10X increase in productivity for the Gore Protein A membrane devices compared to the resin column.

Chromatographic performance and process and product impurity data were comparable between the two Gore Protein A membrane devices and the Protein A resin control. Consistent scaling in membrane makes the process easy to transfer across sizes based on residence time

Demonstrating Similarity Membrane to Resin – Lab Scale

- Eluent Average SEC Product Quality distributions for laboratory scale Protein A resin column and Gore Protein A membrane device
- LMW species, indicative of protein fragmentation, were typically < 0.04 area percent in all cases

Demonstrating Similarity Membrane to Resin – Lab Scale

Eluent Charge Variant distributions for Laboratory scale Protein A resin column and Gore Protein A membrane device*. Eluent n-glycan distributions for Laboratory scale Protein A resin column and Gore Protein A membrane device*.

*Error bars represent relative standard deviation on replicate preparations

Single-Use Downstream Performance Characterization Summary

Step	Step Step Yield (%) Productivity	НСР		Residual	Host Cell DNA	SEC-HPLC (%)		
		Productivity	ppm	Step LRV	[ppm]	Step LRV	Main	HMW
Harvest (Filtration)	-	-	160,187	-	-	-	-	-
Protein A Affinity (Gore Protein A)	103.8	132.6 g L ⁻¹ h ⁻¹	830	2.29	2.49	3.37	93.9	6.11
Viral Inactivation (Single-use Mixer)	-	-	915	-	2.36	-	92.6	7.37
Anion Exchange (Sartobind Q)	88.9	189.2 g L ⁻¹ h ⁻¹	72	1.10	2.20	1.70	92.1	7.89
TFF: UF/DF (Pellicon Capsule)	104.4	72.0 g m ⁻² h ⁻¹	99	-	2.42	-	93.9	6.05

Table summary:

- 1. Step yields, step productivities, and pooled HCP, Protein A and SEC characterization data for the affinity capture, VI, AEX and TFF steps.
- 2. Comparison of step yield, productivity, and process/product quality data for the downstream unit operations. Purity data were analyzed from the final pool at each operation.

Potential for 90% Cost Savings, More Productivity and Faster Preparation

Assumptions made in calculations:

• 2,000 L Bioreactor | 5 g/L | 1 batch example | Resin: \$18,000/L

	Resin Column	Gore Protein A Membrane Column	
Column size	32 L packed bed	2 x 1 L	More efficient facility fit
Cost for 1 batch	\$767,900*	\$76,400	
Residence/Step time	4 minute residence time	Rapid cycle (30 seconds load, 7 seconds operational, 30 seconds CIP)	
Cycles per batch	8 cycles/batch	157 cycles/batch	
Processing time	17.5 hours	19.6 hours	Similar unit op. time
Preparation time	32 hours* *Assumes full Resin packing of empty column (23 hours) + setup (6 hours)	2 hours	94% faster preparation
Storage cost	10% Resin cost	None	

*Pricing includes packing & prep costs and 20% additional resin to account for bed compression.

Scalability of GORE Protein Capture Device

Lab Scale to GMP (2000-L focus)

GMP

GMP

GMP

GMP

GMP

²GORE Protein Capture Devices with Protein A are validated to 100 cycles and demonstrated to 200 cycles.

 3 Range of total time per cycle is inherently higher for lower titers due to increased time needed for loading low titer harvest to 80% of DBC $_{10\%}$

⁴The Gore Productivity Calculator (Gore document PB11711) can be used to model a wide range of additional scenarios

Conclusions & Looking Forward

- Consistent device performance from 1mL to 1L
 - Elution widths
 - ✓ Cycling purity & yield
 - Elution widths
 - ✓ Low pressure drop

Increase productivity through High binding capacity, short residence time, and low pressure drop.

THANK YOU

Visit Booth 310

W. L. Gore & Associates, Inc.

For more information:

bbarrett@wlgore.com

Thanks to AGC Biologics Bothell and Longmont Teams

Together, improving life